

Current Huanglongbing status and

management in Indonesia

Siti Subandiyah and Team. Universitas Gadjah Mada Fac. Of Agriculture, Dept. of Plant Protection Bulaksumur, Yogyakarta 55281, Indonesia sitisubandiyah@ugm.ac.id

No	Tahun	Jeruk Siam (Ton)	Jeruk Besar (Ton)	
1	2005	2.150.219	63.800	
2	2006	1.857.453	85.691	
3	2007	2.551.635	74.249	
4	2008	2.391.011	76.621	
5	2009	2.025.840	105.928	
6	2010	1.937.773	91.131	
7	2011	1.721.880	97.069	
8	2012	1.498.396	113.388	
9	2013	1.548.401	106.344	
10	2014	1.785.264	141.296	
11	2015	1.744.393	111.753	
12	2016	2.014.214	124.260	
13	2017	2.165.189	130.130	
14	2018	2.408.043	102.399	
15	2019	2.444.518	118.972	
16	2020	2.593.384	129.568	
17	2021	2.401.064	112.797	

2024 Citrus

March | AGM & Welcome Even

The trend of citrus production in Indonesia is match with the trend of HLB development that the disease declines the production severely in 5 – 7 years

Citrus Productivity in Indonesia

1985 – 2009 : increasing from **8 to 20 ton**/h 2020 : Citrus orchards at 57.000 ha with 2,5 million ton production = **43.8 ton** /h

Now days : Farmers said 100 kg/tree/year means **60 ton**/ha at normal density planting system of 600 trees/ha

Top 5 Provinces of Citrus Production Centre at ≥ 100.000 ton per year from 2015 – 2019

The highest production is in East Java where there was located the Indonesian Citrus and Subtropical Fruit Research Institute or now BRIN with great contribution on the management of National Citrus Production

Favorable citrus varieties commonly cultivated in Indonesia

HLB in Indonesia

- In the citrus production centers there are small holder farms with less than 1 h land
- The small holder farmers distributed scattered in the area, using planting material that may not healthy but some with HLB infection
- Management of plant diseases and pests depend on the individual capital
- Due to the competition with HLB development mostly farmers cultivated early harvest cultivar: Siem mandarin/tangerine that can be produce fruit on the second year after planting of grafted seedlings

 Siem mandarin is HLB susceptible that may completely destroyed in about 7 years, however that period may have been profitable

Typical symptom and PCR confirmation of HLB infection is quite common found in many citrus orchards in Indonesia

- •Nurhadi 2015 reported that
- 1940 : very severe
- 1990 : 62,34% citrus dead in Tulungagung East Java
- 1988-1996 : 60% citrus dead in Bali
- 2008 : 31% citrus in West Kalimantan declined
- 2020 in South Sulawesi HLB incidence : 17 35% with the severity 54% - 83% (Prida 2021)

The latest Survey of HLB in Indonesia in 2023 – ACIAR HORT 2019/164 (Dr. Achmad Himawan et al.)

Location	Number of leaf samples	Number of leaf samples for PCR check	number of HLB positive sample	HLB positive samples (%)	ACP Status
Malang	<mark>5</mark>	<mark>5</mark>	2	<mark>40</mark>	No ACP
Jember	3	3	0	0	No ACP
<mark>Banyuwangi</mark>	<mark>5</mark>	<mark>5</mark>	<mark>1</mark>	<mark>20</mark>	Clas negative
Bengkulu	70	8 (composite)	0	0	Clas negative
<mark>West Kalimantan</mark>	<mark>96</mark>	<mark>96</mark>	<mark>22</mark>	<mark>22,9</mark>	Clas positive
Indramayu	26	10 (composite)	1	10	No ACP
<mark>Cianjur</mark>	<mark>38</mark>	8 (composite)	<mark>5</mark>	<mark>62,5</mark>	On process
Bali	36	36	0	0	No ACP

Directorate of Horticultural Crop Protection 2024

KAB/KOTA, PROVINSI	Sum of TOTAL LTS (Ha)
Bali	5,00
Kabupaten Buleleng	5,00
Bengkulu	15,50
Kabupaten Rejang Lebong	15,50
Jawa Timur	217,60
Kabupaten Malang	183,00
Kabupaten Jember	25,00
Kota Batu	6,00
Kabupaten Jombang	3,00
Kabupaten Tulungagung	0,60
Kalimantan Barat	47,99
Kabupaten Sambas	38,54
Kabupaten Mempawah	9,45
Kalimantan Selatan	5,01
Kabupaten Banjar	5,00
Kabupaten Tanah Laut	0,01
Lampung	2,08
Kabupaten Lampung Selatan	2,08
Sulawesi Tenggara	1,50
Kabupaten Konawe Selatan	1,50
Kabupaten Buton Selatan	0,00
Sumatera Selatan	0,01
Kabupaten Ogan Ilir	0,01
TOTAL LTS CVPD	294,69

HLB infected seedlings was planted among healthy seedlings, behave as the source of HLB inoculum with the availability of the psyllid vector causing the failure of production

The alternative host of the HLB psyllid vector and the pathogen is frequently found as ornamental plant or fences

Muraya paniculata fences

HLB symptom

Result

Table 1. List of Murraya spp. samples used for phylogenetic analysis and detection of CLas by PCR and qPCR

2024 Cit	t			HLB detection*												
AUSTRA	Code Sample	Source	Finding	April 6 th , 2022		May 20 th , 2022			Dec 16 th , 2022			June 1 st , 2023			Name based on	
			ACP	Las606/ LSS	Las931/ LSS (Ct)	SerraMetF /MetR (Ct)	Las606/ LSS	Las931/ LSS (Ct)	SerraMetF /MetR (Ct)	Las606/ LSS	Las931/ LSS (Ct)	SerraMetF /MetR (Ct)	Las606/ LSS	Las931/ LSS (Ct)	SerraMetF /MetR (Ct)	result phylogenetic tree
5 March AGM & Welcor 6 & 7 March Congress	25-P1 (p)	Purworejo								+	23,39	26,56	+	22,16	25,41	M. paniculata
	25-P2 p	Purworejo								+	22,41	26,83	+	23,09	28,4	M. paniculata
	12-FKG p	UGM	Y	+	22,32	25,51	+	22,73	26,33	+	21,53	25,64	+	22,31	25,67	M. paniculata
	UGM1 p	UGM	Y	+	22,44	26,05	+	23,09	27,78	+	21,17	25,42	+	23,13	27,21	M. paniculata
	13-UGM3 s	UGM	Y							+	28,89	33,28	+	24,07	30,84	M. sumatrana
	18-UGM18 s	UGM	Y							-	33,91	36,26	-			M. sumatrana
	27-TP s	UGM	Y							+	22,73	26,36	+	23,21	26,51	M. sumatrana
	11-FPN s	UGM	Y	+	24,21	28,75	+	25,56	28,15	+	23,06	26,1	-	29,79	34,79	M. sumatrana
	32-342BGR	BBG								-	35,71	38,63				M. lucida
	33-349BGR	BBG								-	33,51	36,2				M. sumatrana
	35-A345BGR	BBG								-	36,89	38,55				M. sumatrana
	29-232BGR	BBG								-	32,21	35,26				M. paniculata
	28-350BGR	BBG								-	34,14	38,09				M. omphalocarpa
	BRB1	Borobudu r	Y				+	21.73	25.54	+	22.56	26.82				M. paniculata
	BRB2	Borobudu r	Y				+	22.23	26.13	+	22.17	26.62				M. paniculata
	BRB3	Borobudu r	Y				+	24.75	30.29	+	23.72	29.92				M. sumatrana
	Citrus reticulata cv. Siem	Purworejo		+	19,84	23,21	+	20	24,31	+	19,33	23,52	+	19,42	24,2	
	Healthy M. su	matrana			0	0		0	0		0	0		0	0	
	Healthy M. pa	niculata			0	0		0	0		0	0		0	0	
	Rhizobium sp.				0	0		0	0		0	0		0	0	
	Serratia sp.					0			0			0			0	

Fig 3. Yellowing blotching on Murraya spp. A: 25-P125-P1; B: 25-P2; C: 12-FKG; D: UGM1; E: 13-UGM3; F: 27-TP; G: 11-FPN; H: BRB1; I: BRB2: J: BRB3

Secure vs open area citrus nurseries and "disease free certified" citrus seedlings

Scions and rootstock seedlings may kept in insect proof screen houses, however the grafted seedlings are acclimated in open land that not enough distance from HLB endemic orchards

HLB Management Practices in Indonesia

- Infected tree/orchard eradication : partially eradication is common with bad neighbors neglecting their orchards
- Few areas with totally eradication in good coordination of farmer groups
- Replanting with "certified or disease free" seedlings
- Intensive application of pesticides
- Insect trapping with insecticides
- Biological control maybe applied using natural enemies or PGPR
- IPM for disease management and growth/fruit production improvement

Pesticide Applications

Rowotengu, Sidomulyo, Jember -8°10'52", 113:25'33", 38,2m, 240° -21/02/2023 11:51:08

Highly fruit production trees

Replanting with certified disease free seedlings

Good growth of replanting trees

Jatiluhur, Glahahagung, Purwoharjo, Banyuwangi -8°31'10", 114°15'42", 52,5m, 105° 20/02/2023 14:18:24

Success Story

- Total eradication in the production center area followed by plant rotation for years with no Citrus
- Replanting using healthy certified seedlings
- Regular Pesticide Applications (at least 6 x/year)
- Regular monitoring on the HLB symptom appearance and early infected tree eradication
- Best health management through balance and regular applications of fertilizers, irrigation, pruning, additional rootstock planting, etc.
- Maintaining natural enemies
- Suitable commodities for interplanting citrus cash crops

Irrigation/drainage canals in the orchard

2024 Citrus AUSTRALIAN CITRUS CONGRESS SUBSINE COAST. GUEENSLAND S March I AGM & Welcome Event

Natural Enemy of Ent Colonies

Positive Activities Practices for managing plant health

Additional Root Stock Planting

Successful citrus (Siam tangerine) production in Jember East Java, Indramayu West Java (Siam tangerine), Bengkulu (RGL mandarin)

-3°29'12", 102°38'31", 1278,0m, 279° 02/12/2022 11:25:13

Inter Cropping System of Citrus with Cash Crops

- Encouraging citrus farmers to increase additional income from the cash crops followed by improving citrus health management
- Encouraging citrus farmers to do horticultural business practices
- Ecological friendly activities for suppressing pests and diseases

Citrus – Cash Crop Intercropping

Red ginger

Vegetables

Tampo, Kaliploso, Banyuwangi 8°26'58", 114°14'55", 74,6m, 198° 20/02/2023 09:49:23

Edamame

Krajan, Kucur, Dau, Kab. Malang °57'23", 112°32'58", 783,0m, 236°

22/02/2023 11:09:06

Intercropping of Citrus Mandarin and Ginger The cash crop may contribute on suppressing the introduction of ACP into the orchards

In Bali

Profitable cash crops that may produce VOC for ACP repellent

In East Java

- ❑ AMF treatment was effective in increasing the growth of citrus plants from all rootstocks and rootstock/scion combination, and effectively reduced disease incidence and severity up to 11 months after AMF inoculation.
- □ *C. jambhiri* rootstock and *C. jambhiri/C. reticulata* gave the best responds to AMF treatment.

Rootstock	Disease severity range	Resistance		
	(%)	categories		
<i>F. japonica</i> cv. "Salam"	63.00-64.78	Susceptible		
C. limonia	54.88-58.51	Susceptible		
C. reshni	53.19-59.00	Susceptible		
C. jambhiri	30.39	Moderately Susceptible		

- AMF treatment was effective in increasing the growth of citrus plants from all rootstocks and rootstock/scion combination, and effectively reduced disease incidence and severity up to 11 months after AMF inoculation.
- □ *C. jambhiri* rootstock and *C. jambhiri/C. reticulata* gave the best responds to AMF treatment.

Rootstock/scion resistance categories

		Disease severity	Resistance
Num	Grafting combination	(%)	category
1	F. japonica cv. "Salam/C.nobilis	66.79	Susceptible
2	C.reshni/ C reticulate	46.68	Moderately susceptible
3	C.limonia/C.nobilis	43.74	Moderately susceptible
4	C.reshni/C. nobilis	43.41	Moderately susceptible
5	F. japonica cv. "Salam"/C.reticulata	42.02	Moderately susceptible
6	C.limonia/C.reticulata	38.44	Moderately susceptible
7	C.jambhiri//C.nobilis	33.25	Moderately susceptible
8	C.jambhiri/C.reticulata	33.15	Moderately susceptible

Journal of Plant Protection Research

Original article

The feeding behavior of Diaphorina citri monitored using an electrical penetration graph (DC-EPG) on citrus plants treated with Bacillus cereus and Bacillus velezensis

Highlights

- Candidatus Liberibacter asiaticus, a phloem-limited bacteria, was transmitted by the Asian citrus psyllid Diaphorina citri

- The effect of Bacillus on citrus plant growth and the feeding behavior of Diaphorina citri was evaluated

- The application of Bacillus cereus and Bacillus velezensis enhanced plant resistance to stylet penetration of Diaphorina citri on the citrus phloem tissues

Keywords

Bacillus cereus, citrus, Bacillus velezensis, Diaphorina citri, electrical penetration graph

Abstract

Diaphorina citri, an important pest and insect vector that can transmit the pathogenic bacteria Candidatus Liberibacter asiaticus, causing Huanglongbing disease, is one of the challenges in citrus agriculture. Integrated pest management by utilizing microorganisms is a wise and efficient alternative without damaging the environment. Utilization of Plant Growth Promoting Rhizobacteria (PGPR), such as Bacillus cereus and Bacillus velezensis, is a potential strategy for the biological control of plant diseases or insect vectors. By inducing systemic resistance in plants, PGPR can enhance plant defense against diseases and insect pests while activating molecular and physiological changes in plants. This research aimed to determine the effect of B. cereus and B. velezensis on the plant growth and feeding behavior of D. citri. The height and volume of the plant canopy were observed periodically for six months, while the feeding behavior of D. citri was monitored using the Electrical Penetration Graph (DC-EPG). The results showed increased height and volume of the citrus plant canopy treated with B. cereus, indicating that B. cereus could act as a PGPR. The application of B. cereus and B. velezensis to citrus seedlings affected the feeding behavior of D. citri. D citri showed difficulty in penetrating the phloem tissue of citrus plants.

Manuscript under review at Journal of Plant Protection Research

PGPR Application for ACP suppression

Future Outlooks

Plant Resistance Mechanisms

- Physic
- Sec Metabolite
- Genetic
- Etc

