BEST PRACTICE MANAGEMENT FOR MINIMIZING **ALBEDO BREAKDOWN** AND **RED SCALE**

by Camilo Garcés

Rind disorder due to albedo tissue disintegration resulting in skin creasing.

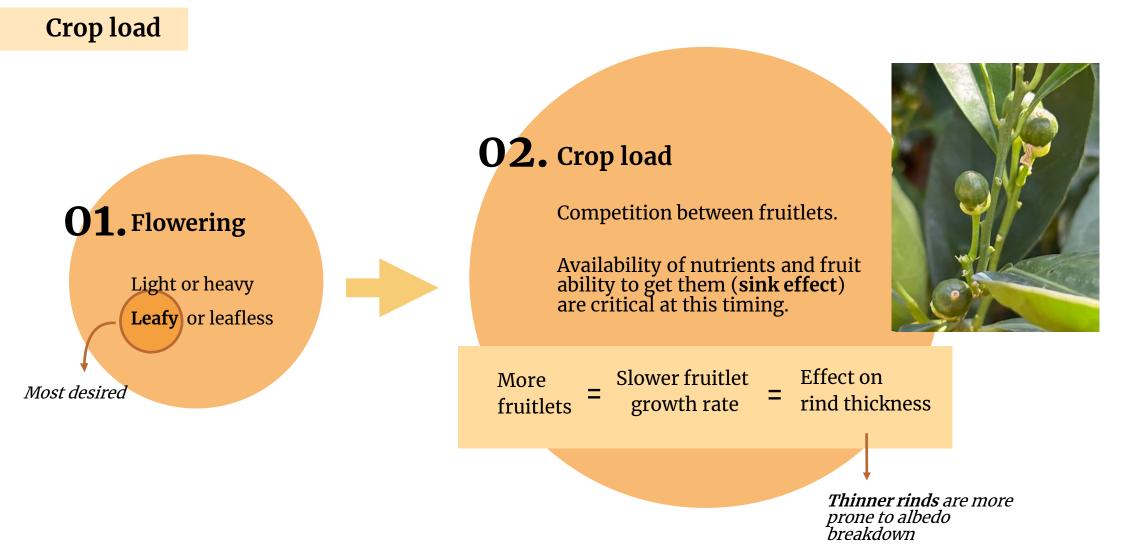
Downgrade in **quality**


Reduce fruit strength

Disorder visible on the rind surface during **maturity**.

Some varieties are more susceptible than others Navelina Washington Navel Cara Cara Daisy

When damage could be happening?


Most of the volume growth is due to the rind

Areas that have an influence

Crop load. Heavy crop predicted

Target / Reduce competition between fruitlets

What can we do?

Manage flowering

01

Winter GA

At flower induction or bud initiation

Pruning

02

Early spring - Flowering

Nutrition

Important information: Foliar Analysis – Soil Analysis

Soil Nutrition

Balanced soil nutrition program according to crop load

Soil texture and pH will have a big influence on nutrients

Any **nutrient limitation** will affect crop load and quality. (Liebig's Law of Minimums) **Combination** between **soil** and **foliar nutrition** can give best results

Foliar Nutrition

Prevent punctual deficiencies during processes of high demand in certain nutrients

Calcium is very low mobile. Foliar applications in combination with **Boron** during cell division are critical

Biostimulants (Seaweed, Glycine – Betaine...)

Maximise foliar uptake:

Point of deliquescence of foliar fertilizers. **Compatibility** of foliar products.

Foliar nutrition

Spring flush and flowering

Foliar nutrition | Nitrogen, Zinc, Manganese and Magnesium *Foliar nutrition |* Nitrogen, **Calcium**, Boron and Potassium

Stage I of fruit growth (Cell division)

Stage II of fruit growth (Cell expansion)

Foliar nutrition | Phosphorus and **Potassium**

Plant growth regulators

Gibberellic acid

Timing of spray is **early cell expansion** (Oranges- 40 mm (Golf ball))

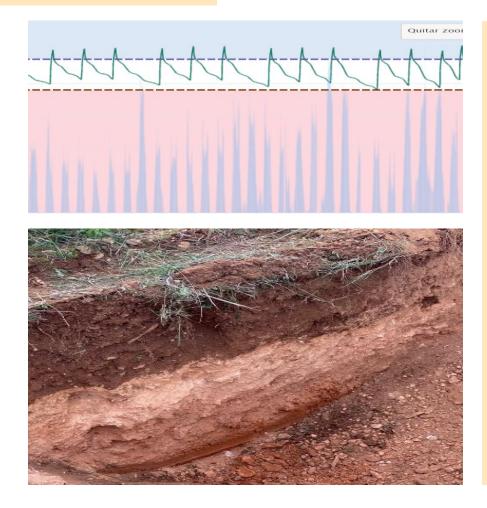
If Albedo breakdown is predicted to be an issue sensitive varieties or blocks may require a second application two weeks later

Adding **foliar fertilizers** to the GA spray can **improve** the result

or

Calcium nitrate plus Boron Potassium nitrate plus MAP

Auxins


Auxins improve **rind strength** and **enhance the sink effect** of the fruit.

Petal fall: At this stage auxins are used in different citrus countries when a percentage of smaller fruitlets is wanted to be dropped

Fruit sizing: 2,4–DP (Corasil[®]) or 3,5,6–TPA (Tops[®]) applied to increase fruit size can reduce Albedo breakdown

Irrigation

Identify **field capacity** and **refill point**. Adequate balance **oxygen** and **water** is important to maximise root activity.

Identify where the root system is located. Reaching all the root profile will ensure avoiding any water stress.

Adjust the **irrigation program** to the **actual uptake**. Over or under irrigate will cause a stress on the tree

Soil pits are a useful to identify the soil type through the profile and acknowledge any potential limitation.

Weather conditions

Weather conditions have a direct influence on plant activity

Nutrition & irrigation strategies will be determined by transpiration rates.

When **low temperatures** reduce nutrient uptake, **foliar nutrition** becomes critical. Soil temperatures below 13°C minimise root uptake.

Favourable weather conditions are critical when using PGR's

Weather conditions

Mildura weather station

2022 - 2023

Temperature (°C)

Month	Mean maximum temperature		Mean minimum temperature		Mean temperature	
September	19.17	25	7.6	7.59	13.4	16.3
October	22.46	24.7	11.5	9.25	17	17
November	24	29.47	10.9	13.43	17.5	21.45
December	30	31.94	14.3	15.9	22.2	23.94

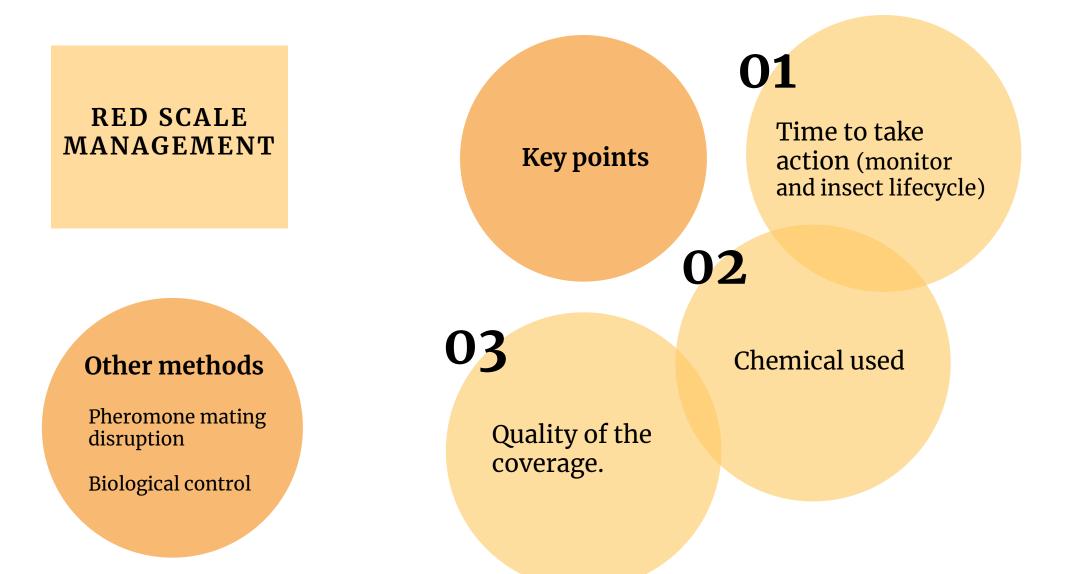
Relative humidity(%)

Month	Average RH 9am		Average RH 3pm	
September	75.3	53.2	50.1	28.12
October	78	57.7	51.2	29
November	68	55.4	41.86	27.2
December	49.7	55.45	25.77	27.45

Days with 75% or more of sky covered with clouds

Month	9am		3pm		
September	10	4	14	4	
October	18	8	21	4	
November	13	8	11	6	
December	5	13	5	6	

Each season can be different


Major pest in all citrus growing areas

From 3 to 5 generations per year depending on weather conditions.

Downgrades fruit quality and heavy infestations weakens the trees.

Can be located on **wood**, leaves and fruits.

Insect lifecycle

Red scale lifecycle development depends on **temperature**

Require **650 Degree days** to complete the cycle.

Threshold temperature: **11.7°C**

An adult female can produce **100** - **150 crawlers**

Adult males live around 6 hours

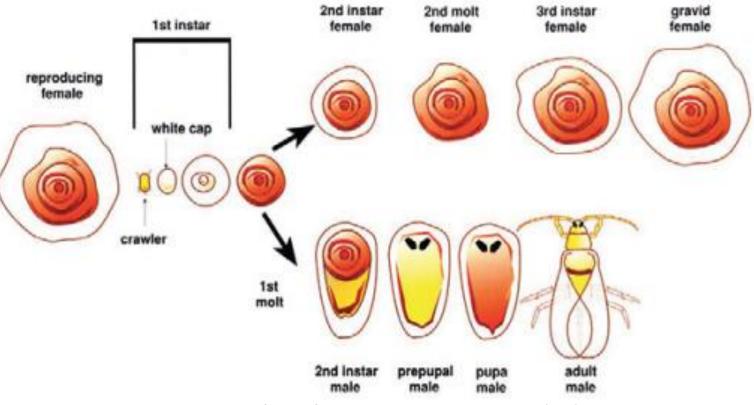
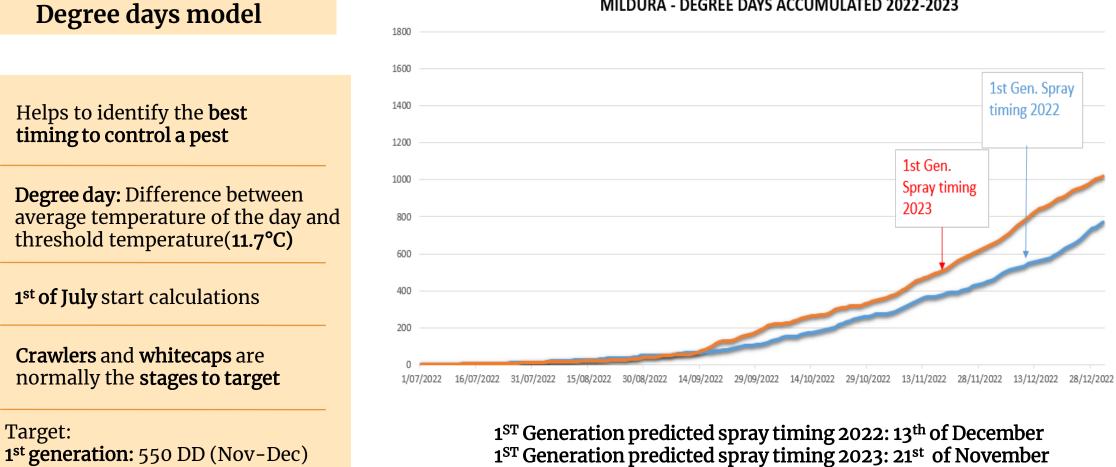



Figure: Life cycle of Aonidiella aurantii. Source: Forester et al.(1995)

2nd generation: 1200 DD (Jan-Feb)

MILDURA - DEGREE DAYS ACCUMULATED 2022-2023

2022

2023

Male pheromone trap

Helps to identify the **peak of** male flight

Weekly checks to monitor male activity

Peak emerge of crawlers **300** DD after peak male flight

Male description: Two winged insect, yellowish body with a dark band across the back

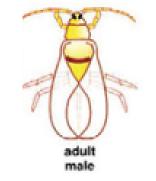
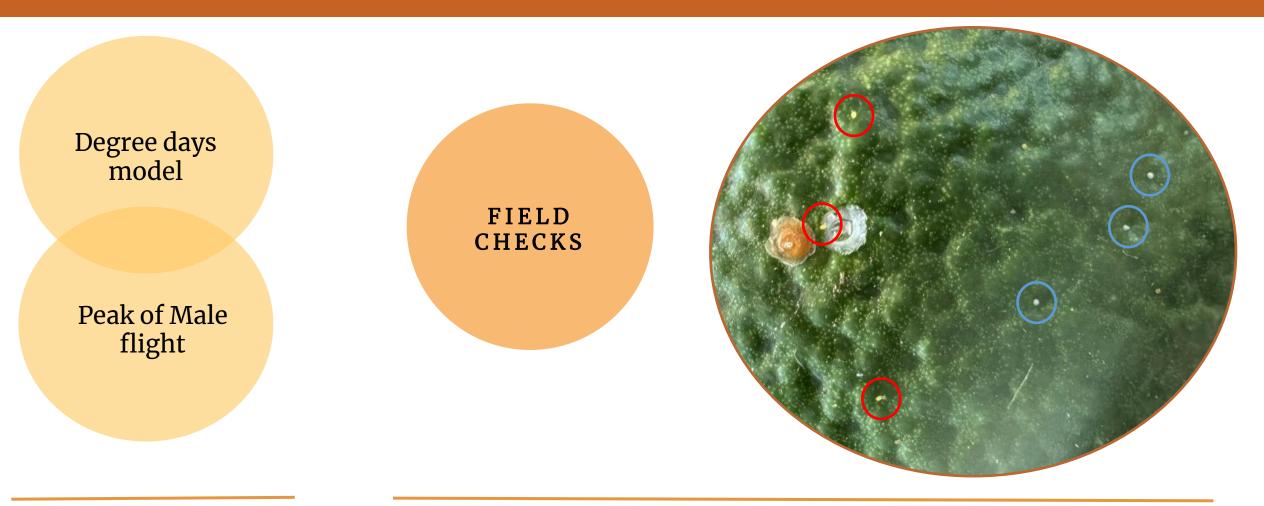



Figure: Male description. Source: Forester et al.(1995)

Predict

Identify. Crawlers & Whitecaps

Chemicals used

Foliar application

Insect growth regulators: Pyriproxyfen – Buprofezin

Lipid Synthesis Inhibitors: Spirotetramat

Paraffinic Oil

Insect growth regulators & oils require to **contact the pest** so the quality of application is critical

Spirotetramat has some **systemic effect**. When scale is on fruit and good **coverage** is **not guarantee**

Consider to control in 1st generation if last season fruit was infested or pest pressure is high

2nd **generation** should be targeted if Red scale can be found on fruit in Summer

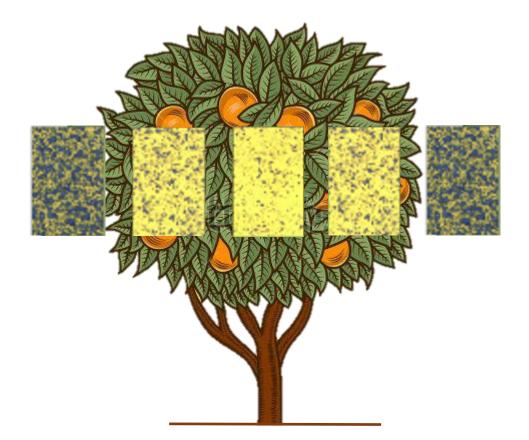
Best control when crawlers and whitecaps are targeted

Soil application

Neonicotinoids: Imidaclorpid - Clothianidin

Application method is critical to ensure plant uptake

Coverage


Good coverage is essential to control red scale

If only **fruit inside the canopy** is **affected** by Red scale a **coverage issue** might be happening

Pruning will help to reach all the canopy

Equipment calibration is essential to guarantee a good coverage

Test the quality of the spray using **water sensitive paper**.

Other control methods

Mating disruption

Interrupt the communication between male and female by increasing the levels of pheromone in the block.

400-500 dispensers per ha and year

Application prior to first male flight

First year of use might require to combine it with **other control method** if pest pressure is high.

Biological control

Parasitic wasp (Aphytis spp & Comperiella bifasciata) can provide a good level of control in certain conditions

Can reduce the use of chemicals

Selective chemicals will help to preserve them

Ants Dust Broad spectrum chemicals Extreme weather conditions

Negative effects

THANK YOU FOR YOUR ATTENTION

